Innovative WASH interventions to prevent cholera. Source: WHO Wkly Epid Rec, Oct 2, 2015

Authors: Daniele Lantagne, Andy Bastable, Jeroen H. J. Ensink, and Eric Mintz.

In the late 19th and early 20th centuries, epidemic cholera was virtually eliminated in industrialized countries through municipal water supply with treatment and sanitation infrastructure.1 A century later, in 2014, only 58% of the global population had access to piped-on premises water,2 and an estimated 1.8 billion people (28% of the global population) drank microbiologically contaminated water.3 Within this inadequate water and sanitation context, cholera transmission continues.

In 2014, 32 countries – many of which are struggling with poverty, rapid population growth, and instability – reported cholera transmission.4 A recent model found that national improved water access of 71%, and improved sanitation access of 39%, predicted whether a country would have endemic cholera with 62%–65% sensitivity and specificity.5 As progress is made towards universal access to reliable piped-on-premises water, reducing the remaining cholera burden requires a comprehensive strategy. Community- and household level water, sanitation, and hygiene (WASH) interventions are one part of that strategy.

Common cholera-prevention WASH interventions include: water supply, water treatment (well, pot, or bucket chlorination and household treatment); sanitation options (latrines); and, promotion of hand washing and environmental hygiene.6 The effectiveness of these interventions varies7 : water supply and chlorine-based, filtration, and solar disinfection household options have been shown to reduce cholera transmission among users;8, 9, 10, 11, 12 well/pot chlorination effectively treats water only for a few hours,13, 14, 15 unless chlorine is regularly added;16 there is little research on bucket chlorination, sanitation, and hygiene interventions.

Recent innovations in chlorine-prevention WASH include identification of factors leading to programmatic success, and new product design (such as sourcebased water treatment and personal use sanitation options).

An investigation of 14 household treatment programmes implemented in 4 emergencies (including 3 cholera emergencies) found that reported use ranged from 1% to 93% and effective use (the percentage of recipients who improved their drinking water microbiological quality to international standards) ranged from 0 to 68%.17 The most successful programme provided an effective method (chlorine tablets), with the necessary supplies to use it (bucket and tap), and ongoing training by local community health workers to people using contaminated water who were familiar with chlorination before the emergency. Conversely, the least successful programme distributed only chlorine tablets in a relief kit labeled in English to populations without previous chlorination experience.

Similar results were found in an evaluation of dispensers, an innovative source-based intervention that includes a chlorine dispenser and dosing valve installed at water sources, community education, and chlorine refills. Across seven evaluations in four emergencies (including 3 cholera emergencies), reported dispenser use ranged from 9-97% and effective use from 0 to 81%.18 More effective programmes installed dispensers at point-sources, maintained a high-quality chlorine solution manufacturing and distribution chain, maintained hardware, integrated dispenser projects within larger water programmes, compensated promoters, had experienced staff, worked with local partners to implement the project, conducted ongoing monitoring, and had a sustainability plan.

The Peepoo is a personal, single-use, biodegradable selfsanitizing double-plastic bag toilet. Peepoos contain sufficient powdered urea to inactivate harmful pathogens in urine and feces after 4 weeks, at which time the waste can be used as fertilizer. Peepoos have been used where latrines are not feasible due to population density, and to bridge the gap between emergency onset and latrine construction.19 One emergency programme concluded that products should be pre-positioned before the emergency, all products necessary for use (including a sitting/squatting stool) should be provided to recipients, training for community health workers should occur before distribution, compensation for collection activities should be provided, and that the disposal mechanism and exit strategy should be predefined before distribution.

As can be seen, lessons learned from the programmes described above are similar: WASH interventions can successfully improve water quality, isolate feces from the environment, and reduce the potential for cholera transmission if they are wisely implemented and distributed with appropriate supplies and training to at-risk populations.

[click to continue…]

Bookmark and Share

Acceptability and Use of Portable Drinking Water and Hand Washing Stations in Health Care Facilities and Their Impact on Patient Hygiene Practices, Western Kenya. PLoS One, May 2015.

Authors: Sarah D. Bennett, Ronald Otieno, Tracy L. Ayers, Aloyce Odhiambo, Sitnah H. Faith, Robert Quick, Hans-Joachim Lehmler

Many health care facilities (HCF) in developing countries lack access to reliable hand washing stations and safe drinking water. To address this problem, we installed portable, low-cost hand washing stations (HWS) and drinking water stations (DWS), and trained healthcare workers (HCW) on hand hygiene, safe drinking water, and patient education techniques at 200 rural HCFs lacking a reliable water supply in western Kenya. We performed a survey at baseline and a follow-up evaluation at 15 months to assess the impact of the intervention at a random sample of 40 HCFs and 391 households nearest to these HCFs. From baseline to follow-up, there was a statistically significant increase in the percentage of dispensaries with access to HWSs with soap (42% vs. 77%, p<0.01) and access to safe drinking water (6% vs. 55%, p<0.01).

Female heads of household in the HCF catchment area exhibited statistically significant increases from baseline to follow-up in the ability to state target times for hand washing (10% vs. 35%, p<0.01), perform all four hand washing steps correctly (32% vs. 43%, p = 0.01), and report treatment of stored drinking water using any method (73% vs. 92%, p<0.01); the percentage of households with detectable free residual chlorine in stored drinking water did not change (6%, vs. 8%, p = 0.14). The installation of low-cost, low-maintenance, locally-available, portable hand washing and drinking water stations in rural HCFs without access to 24-hour piped water helped assure that health workers had a place to wash their hands and provide safe drinking water. This HCF intervention may have also contributed to the improvement of hand hygiene and reported safe drinking water behaviors among households nearest to HCFs.

Morphology, composition and performance of a ceramic filter for household water treatment in Indonesia. Water Practice & Technology Vol 10 No 2 pp 361–370 © IWA Publishing 2015 doi:10.2166/wpt.2015.044.

Authors: K. Matthies, H. Bitter,  et al.

People in rural developing areas often depend on point-of-use water treatment for safe drinking water. A very popular and efficient technology for this is the use of ceramic filters, as promoted by the non-governmental organization Potters for Peace. These filters are already used in many countries worldwide, including Indonesia, where they are manufactured in Bandung, Java by Pelita Indonesia. The filters are made of local clay and combustible material, and coated with silver after firing. However, data available on them are very scarce. The structure, composition, and physico-chemical and microbiological performance of the filter were examined. Pore sizes mostly ranged from 1 to 40 µm and flow rate was about 1.3 L/h. Silver, arsenic and manganese were leaching from the filter in remarkable concentrations. While values for silver were about 0.01–0.02 mg/L, manganese was washed out after a few liters and leaching of arsenic fell below 0.02 mg/L after filtering some liters. With a log reduction of 3–5, efficiency in bacteria reduction was satisfactory in contrast to virus removal which was not sufficient according to the World Health Organization guidelines, with a log reduction below 1.

Perception of drinking water safety and factors influencing acceptance and sustainability of a water quality intervention in rural southern India. BMC Public Health, July 30, 2015.

Mark Rohit Francis, Guru Nagarajan,  et al.

Background – Acceptance and long-term sustainability of water quality interventions are pivotal to realizing continued health benefits. However, there is limited research attempting to understand the factors that influence compliance to or adoption of such interventions.

Methods – Eight focus group discussions with parents of young children – including compliant and not compliant households participating in an intervention study, and three key-informant interviews with village headmen were conducted between April and May 2014 to understand perceptions on the effects of unsafe water on health, household drinking water treatment practices, and the factors influencing acceptance and sustainability of an ongoing water quality intervention in a rural population of southern India.

Results – The ability to recognize health benefits from the intervention, ease of access to water distribution centers and the willingness to pay for intervention maintenance were factors facilitating acceptance and sustainability of the water quality intervention. On the other hand, faulty perceptions on water treatment, lack of knowledge about health hazards associated with drinking unsafe water, false sense of protection from locally available water, resistance to change in taste or odor of water and a lack of support from male members of the household were important factors impeding acceptance and long term use of the intervention.

Conclusion – This study highlights the need to effectively involve communities at important stages of implementation for long term success of water quality interventions. Timely research on the factors influencing uptake of water quality interventions prior to implementation will ensure greater acceptance and sustainability of such interventions in low income settings.


The paradigm shift in the approach to household water treatment systems, 2015.

Urs Heierli, social marketing expert and advisor to the Safe Water II project, talks about the necessary paradigm shift to household water treatment systems. Visit:… to read more about Safe Water Phase 2, a three year initiative (2015-2018) aiming to increase access to safe water particularly for people living at the base of the economic pyramid (BOP).

Effectiveness of emergency water treatment practices in refugee camps in South Sudan. WHO Bulletin, Aug 2015.

Authors: Syed Imran Ali, Syed Saad Ali & Jean-Francois Fesselet

Objective – To investigate the concentration of residual chlorine in drinking water supplies in refugee camps, South Sudan, March–April 2013.

Methods – For each of three refugee camps, we measured physical and chemical characteristics of water supplies at four points after distribution: (i) directly from tapstands; (ii) after collection; (iii) after transport to households; and (iv) after several hours of household storage. The following parameters were measured: free and total residual chlorine, temperature, turbidity, pH, electrical conductivity and oxidation reduction potential. We documented water handling practices with spot checks and respondent self-reports. We analysed factors affecting residual chlorine concentrations using mathematical and linear regression models.

Findings – For initial free residual chlorine concentrations in the 0.5–1.5 mg/L range, a decay rate of ~5×10-3 L/mg/min was found across all camps. Regression models showed that the decay of residual chlorine was related to initial chlorine levels, electrical conductivity and air temperature. Covering water storage containers, but not other water handling practices, improved the residual chlorine levels.

Conclusion The concentrations of residual chlorine that we measured in water supplies in refugee camps in South Sudan were too low. We tentatively recommend that the free residual chlorine guideline be increased to 1.0 mg/L in all situations, irrespective of diarrhoeal disease outbreaks and the pH or turbidity of water supplies. According to our findings, this would ensure a free residual chlorine level of 0.2 mg/L for at least 10 hours after distribution. However, it is unknown whether our findings are generalizable to other camps and further studies are therefore required.

Determinants of Caregivers’ Use and Adoption of Household Water Chlorination: A Qualitative Study with Peri-urban Communities in the Peruvian Amazon. Am Jnl Trop Med Hyg, July 2015.

Authors: Jessica D. Rothstein, Elli Leontsini, et al.

The gap between the efficacy and the effectiveness of household water treatment in reducing diarrhea-related morbidity indicates the need for a better understanding of the determinants of long-term behavior change. To explore the barriers to drinking water chlorination in the Peruvian Amazon, where diarrhea is endemic among under-5 children, we conducted qualitative research with 23 caregivers from peri-urban communities of Iquitos, Peru. Our inquiry drew on the Transtheoretical Model of behavior change and the Integrated Behavioral Model for Water, Sanitation, and Hygiene to identify the most relevant contextual, psychosocial, and technological determinants of initial action and long-term adoption of chlorination.

Our findings suggest that the decision to try out this practice resulted from the combined effect of knowledge of chlorination benefits and product availability and affordability. Progress from action to adoption was influenced by caretakers’ understanding of dosage, the packaging of chlorine products, knowledge and skills for multipurpose laundry bleach, the taste of treated water, and reinforcement. This analysis suggests that a focus on these determinants and the household domain may help to improve the sustainability of future intervention efforts.


Coping with household water scarcity in the savannah today: Implications for health and climate change into the futureEarth Interact. 2015 doi:10.1175/EI-D-14-0039.1, in press.

Authors: Amber L. Pearson, Jonathan D. Mayer, David J. Bradley

Even as millions live without reliable access to water, very little is known about how households cope with scarcity. The aims of this research were to: 1) understand aspects of water scarcity in three rural villages in southwestern Uganda; 2) examine differences by demographics and type of source; 3) assess relationships between different factors related to water access; and 4) explore coping strategies used. Health implications and lessons learned that relate to future climate change are discussed.

Over half of the households relied on seasonal water sources. Of those accessing ‘permanent’ sources, ~30% experienced inaccessibility within the past two weeks. Self-reported better access to water was correlated with minutes spent walking to source and to some degree with the source being more public or shared. Those without access to public sources tended to migrate as the primary coping strategy. Water sharing and reciprocity appears crucial between wealthy and poor households, however, those from outside ethnic groups appear to be partially excluded. Middle income households followed by the poorest had the largest reliance on purchasing water to cope. These findings underscore how access to water resources, particularly in times of insecurity, involves social networks.


Knowledge, Information, and Water Treatment Behavior of Residents in the Kathmandu Valley, Nepal. The Development Journal of the South, Vol. 1, No. 1, 2015.

Authors: Hari Katuwal, Mona K Qassim, José A. Pagán, Jennifer A Thacher, Alok K. Bohara

In this paper, we examine determinants of water treatment behavior using survey data (N=1200) from Kathmandu, Nepal. In particular, this paper focuses on the impacts of knowledge, exposure to information, and community participation on drinking water treatment behavior. Previous research has found that income, education level, awareness, and exposure to media are major factors that impact the individual-level decision to treat water before using it. We contribute to this literature by explicitly examining how knowledge about waterborne diseases, exposure to water quality information campaigns, and participation in community organizations impact drinking water treatment behavior.

The results from probit regression analyses suggest that either a one percentage increase in the knowledge index or community participation index both increase the likelihood of utilizing drinking water treatment methods by about 0.17 percentage points. Households connected to the distribution system are 31 percentage points more likely to treat water compared to those that are not connected to the system. Multinomial results indicate that wealthier households use more than one treatment method.

Silver Dissolution and Release from Ceramic Water Filters. Env Sci Tech, June 2015.

Authors: Anjuliee M. Mittelman, Daniele S. Lantagne, Justine Rayner, and Kurt D. Pennell

Application of silver nanoparticles (nAg) or silver nitrate (AgNO3) has been shown to improve the microbiological efficacy of ceramic water filters used for household water treatment. Silver release, however, can lead to undesirable health effects and reduced filter effectiveness over time. The objectives of this study were to evaluate the contribution of nanoparticle detachment, dissolution, and cation exchange to silver elution, and to estimate silver retention under different influent water chemistries. Dissolved silver (Ag+) and nAg release from filter disks painted with 0.03 mg/g casein-coated nAg or AgNO3 were measured as a function of pH (5–9), ionic strength (1–50 mM), and cation species (Na+, Ca2+, Mg2+).

Silver elution was controlled by dissolution as Ag+ and subsequent cation exchange reactions regardless of the applied silver form. Effluent silver levels fell below the drinking water standard (0.1 mg/L) after flushing with 30–42 pore volumes of pH 7, 10 mM NaNO3 at pH 7. When the influent water was at pH 5, contained divalent cations or 50 mM NaNO3, silver concentrations were 5–10 times above the standard. Our findings support regular filter replacement and indicate that saline, hard, or acidic waters should be avoided to minimize effluent silver concentrations and preserve silver treatment integrity.