Laboratory demonstration and field verification of a Wireless Cookstove Sensing System (WiCS) for determining cooking duration and fuel consumption. Energy for Sustainable Development. Volume 23, December 2014, Pages 59–67.

Authors: E Graham, et al.

With improved cookstoves (ICs) increasingly distributed to households for a range of air pollution interventions and carbon-credit programs, it has become necessary to accurately monitor the duration of cooking and the amount of fuel consumed. In this study, laboratory trials were used to create temperature-based algorithms for quantifying cooking duration and estimating fuel consumption from stove temperatures. Field validation of the algorithms employed a Wireless Cookstove Sensing System (WiCS) that offers remote, low-cost temperature sensing and the wireless transmission of temperature data to a centralized database using local cellular networks. Field trials included 68 unscripted household cooking events. In the laboratory, temperature responses of the IC body and that of a removable temperature probe (J-bar) followed well-known physical models during cooking, indicating that location of the temperature sensor is not critical.


Affordability for sustainable energy development products. Applied Energy, Volume 132, 1 November 2014, Pages 308–316.

Paul Riley

Clean burning products, for example cooking stoves, can reduce household air pollution (HAP), which prematurely kills 3.5 million people each year. By careful selection of components into a product package with micro-finance used for the capital payment, barriers to large-scale uptake of products that remove HAP are reduced. Such products reduce smoke from cooking and the lighting from electricity produced, eliminates smoke from kerosene lamps. A bottom-up financial model, that is cognisant of end user social needs, has been developed to compare different products for use in rural areas of developing countries. The model is freely available for use by researchers and has the ability to assist in the analysis of changing assumptions.

Business views of an individual villager, the village itself and a country view are presented. The model shows that affordability (defined as the effect on household expenses as a result of a product purchase) and recognition of end-user social needs are as important as product cost. The effects of large-scale deployment (greater that 10 million per year) are described together with level of subsidy required by the poorest people. With the assumptions given, the model shows that pico-hydro is the most cost effective, but not generally available, one thermo-acoustic technology option does not require subsidy, but it is only at technology readiness level 2 (NASA definition) therefore costs are predicted and very large investment in manufacturing capability is needed to meet the cost target.

Thermo-electric is currently the only technology that can be used worldwide every day of the year and is available without research. However, it is not yet self-financing and therefore requires subsidy or diversion of more household income to be affordable. A combination of photovoltaic and clean cookstove may be suitable in areas where sufficient solar radiation is available on most days. Affordability is shown to be highly dependent on the income that can be derived from carbon credits.

WASHplus Weekly – Issue 166 | Oct  24, 2014 | Focus on Clean Cookstoves

This issue highlights recent reports, articles, announcements, and upcoming events related to clean cookstoves. Included are a review of the evidence on behavior change techniques in clean cooking interventions and a systematic review of Chinese language literature on adoption of improved stoves and clean fuels.


The Use of Behaviour Change Techniques in Clean Cooking Interventions to Achieve Health, Economic and Environmental Impact: A Review of the Evidence and Scorecard of Effectiveness, 2014. N Goodwin. (LINK)
The aim of this study is to review the use of behavior change approaches for clean cooking interventions in resource-poor settings. Using publicly available data, the report synthesizes the evidence of the use of behavior change techniques (BCTs) for human and environmental outcomes and impact. The report includes a set of case studies on selected interventions that use BCTs and applies a scorecard to assess the effectiveness of each intervention’s approach to behavior change. It also includes a set of recommendations for the clean cooking sector to consider.

Chinese Literature Review on Adoption of Clean Cookstoves and Fuels, 2014. Global Alliance for Clean Cookstoves. (LINK)
In 2013, the Global Alliance for Clean Cookstoves supported a systematic review of Chinese language literature on the adoption of improved stoves and clean fuels to complement a DFID-commissioned review conducted by the Evidence for Policy and Practice Information and Coordinating Centre at the University of Liverpool. More than 100 studies across Asia, Africa, and Latin America were reviewed to identify the key enablers and barriers influencing the adoption of improved stoves and clean fuel.

The 2013 Results Report: Sharing Progress on the Path to Adoption of Cleaner and More Efficient Cooking Solutions, 2014. Global Alliance for Clean Cookstoves (GACC). (LINK)
The 2013 Results Report is the second GACC report illuminating traction and trends in the cookstove and fuel sector. Building on results reporting first conducted in 2012, this report tracks partners’ self-reported progress in 2013 toward their shared adoption goal. As such, where possible, the report also offers year-over-year analysis of GACC partner activities, including analyses comparing new and repeat respondents to ensure that results are accurately stated and interpreted.

[click to continue…]

Bookmark and Share

Can Currently Available Advanced Combustion Biomass Cook-Stoves Provide Health Relevant Exposure Reductions? Results from Initial Assessment of Select Commercial Models in India. Ecohealth. 2014 Oct 8.

Authors: Sambandam S, Balakrishnan K, et al.

World Health Organisation Collaborating Center for Occupational and Environmental Health, Department of Environmental Health Engineering, Sri Ramachandra University, No.1, Ramachandra Nagar, Porur, Chennai, 600116, India,

Household air pollution from use of solid fuels is a major contributor to the national burden of disease in India. Currently available models of advanced combustion biomass cook-stoves (ACS) report significantly higher efficiencies and lower emissions in the laboratory when compared to traditional cook-stoves, but relatively little is known about household level exposure reductions, achieved under routine conditions of use.

We report results from initial field assessments of six commercial ACS models from the states of Tamil Nadu and Uttar Pradesh in India. We monitored 72 households (divided into six arms to each receive an ACS model) for 24-h kitchen area concentrations of PM2.5 and CO before and (1-6 months) after installation of the new stove together with detailed information on fixed and time-varying household characteristics. Detailed surveys collected information on user perceptions regarding acceptability for routine use.

While the median percent reductions in 24-h PM2.5 and CO concentrations ranged from 2 to 71% and 10-66%, respectively, concentrations consistently exceeded WHO air quality guideline values across all models raising questions regarding the health relevance of such reductions. Most models were perceived to be sub-optimally designed for routine use often resulting in inappropriate and inadequate levels of use. Household concentration reductions also run the risk of being compromised by high ambient backgrounds from community level solid-fuel use and contributions from surrounding fossil fuel sources.

Results indicate that achieving health relevant exposure reductions in solid-fuel using households will require integration of emissions reductions with ease of use and adoption at community scale, in cook-stove technologies. Imminent efforts are also needed to accelerate the progress towards cleaner fuels.

The Use of Behaviour Change Techniques in Clean Cooking Interventions to Achieve Health, Economic and Environmental Impact: A review of the evidence and scorecard of effectiveness, 2014. (Executive summary)

Authors: Nicholas J. Goodwin, Sarah Ellen O’Farrell, Kirstie Jagoe, et al.

The aim of this study was to review the use of behaviour change approaches in clean cooking interventions in resource-poor settings. Using publicly available data, the report synthesises the evidence of the use of behaviour change techniques (BCTs) for human and environmental outcomes and impact. The report includes a set of case studies on selected interventions that use BCTs and applies a scorecard to assess the effectiveness of each intervention’s approach to behaviour change. The report then discusses the findings from the review and case studies and includes a set of recommendations for the clean cooking sector to consider. A planned task was to compare interventions through an economic return on investment (cost-benefit) lens, however the availability and consistency of data did not make this possible.



Behavioral Attitudes and Preferences in Cooking Practices with Traditional Open-Fire Stoves in Peru, Nepal, and Kenya: Implications for Improved Cookstove Interventions. Int. J. Environ. Res. Public Health 2014, 11(10).

Authors: Evelyn L. Rhodes, Robert Dreibelbis, Elizabeth M. Klasen, et al.

Global efforts are underway to develop and promote improved cookstoves which may reduce the negative health and environmental effects of burning solid fuels on health and the environment. Behavioral studies have considered cookstove user practices, needs and preferences in the design and implementation of cookstove projects; however, these studies have not examined the implications of the traditional stove use and design across multiple resource-poor settings in the implementation and promotion of improved cookstove projects that utilize a single, standardized stove design.

We conducted in-depth interviews and direct observations of meal preparation and traditional, open-fire stove use of 137 women aged 20–49 years in Kenya, Peru and Nepal prior in the four-month period preceding installation of an improved cookstove as part of a field intervention trial. Despite general similarities in cooking practices across sites, we identified locally distinct practices and norms regarding traditional stove use and desired stove improvements. Traditional stoves are designed to accommodate specific cooking styles, types of fuel, and available resources for maintenance and renovation. The tailored stoves allow users to cook and repair their stoves easily. Women in each setting expressed their desire for a new stove, but they articulated distinct specific alterations that would meet their needs and preferences.

Improved cookstove designs need to consider the diversity of values and needs held by potential users, presenting a significant challenge in identifying a “one size fits all” improved cookstove design. Our data show that a single stove design for use with locally available biomass fuels will not meet the cooking demands and resources available across the three sites. Moreover, locally produced or adapted improved cookstoves may be needed to meet the cooking needs of diverse populations while addressing health and environmental concerns of traditional stoves.

Household Air Pollution Causes Dose-dependent Inflammation and Altered Phagocytosis in Human Macrophages. Am J Respir Cell Mol Biol. 2014 Sep 25.

Authors: Rylance J1, Fullerton DG, Scriven J, Aljurayyan AN, Mzinza D, Barrett S, Wright AK, Wootton DG, Glennie SJ, Baple K, Knott A, Mortimer K, Russell DG, Heyderman RS, Gordon SB.

1Liverpool School of Tropical Medicine, Respiratory Infection , Pembroke Place , Liverpool, United Kingdom, L3 5QA , 0044 1517053712 , Malawi Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi, University of Liverpool, Respiratory Medicine, University Hospital Aintree, Liverpool, United Kingdom ;

Background – Three billion people are exposed to household air pollution from biomass fuel use. Exposure is associated with higher incidence of pneumonia, and possibly tuberculosis. Understanding mechanisms underlying these defects would improve preventive strategies.

Methods – We used human alveolar macrophages obtained from healthy Malawian adults exposed naturally to household air pollution, and compared with human monocyte-derived macrophages exposed in vitro to respirable-sized particulates. Cellular inflammatory response was assessed by: IL-6 and IL-8 production in response to particulate challenge; phagocytosis of fluorescent-labelled beads and intraphagosomal oxidative burst capacity; ingestion and killing of Streptococcus pneumoniae and Mycobacterium tuberculosis measured by microscopy and quantitative culture. Particulate ingestion was quantified by digital image analysis.

Results – We were able to reproduce the carbon loading of naturally exposed alveolar macrophages by in vitro exposure of monocyte derived macrophages. Fine carbon black induced IL-8 release from monocyte derived and alveolar macrophages (p<0.05), with similar magnitude responses (log10 increases of 0.93 [SEM 0.2] vs 0.74 [SEM 0.19] respectively). Phagocytosis of pneumococci and mycobacteria was impaired with higher particulate loading. High particulate loading corresponded with a lower oxidative burst capacity (p=0.0015). There was no overall effect on killing of M. tuberculosis.

Conclusion Alveolar macrophage function is altered by particulate loading. Our macrophage model is comparable morphologically to the in vivo uptake of particulates. Wood smoke exposed cells demonstrate reduced phagocytosis but unaffected mycobacterial killing, suggesting defects related to chronic wood smoke inhalation limited to specific innate immune functions.

Impacts of household energy programs on fuel consumption in Benin, Uganda, and India. Energy for Sustainable Development, Available online 16 September 2014, In Press, Corrected Proof — Note to users

Charity Garland-a, Kirstie Jagoe-a, Emmy Wasirwa-b, Raphael Nguyen-c, Christa Roth-d, Ashwin Patel-e, Nisha Shah-f, Elisa Derby-g, John Mitchell-h, David Pennise-a, Michael A. Johnson-a,

a Berkeley Air Monitoring Group, 2124 Kittredge St #57, Berkeley, CA 94704, USA
b Wana Energy Solutions, Uganda
c Gesellschaft für Internationale Zusammenarbeit (GIZ), FABEN Project, Benin
d Food and Fuel Consultants, Germany
e Alpha Renewable Energy, Pvt. Ltd., India
f Self Employed Women’s Association, India
g Winrock International, USA
h United States Environmental Protection Agency, USA

This paper presents results of three United States Environmental Protection Agency (U.S. EPA) sponsored field studies which assessed the fuel consumption impacts of household energy programs in Benin, Uganda, and Gujarat, India. These studies expand on a previous round of U.S. EPA supported efforts to build field testing capacity and collect stove performance data in Peru, Nepal, and Maharashtra, India. Daily fuel consumption estimates of traditional and intervention technologies were made using the Kitchen Performance Test (KPT) protocol to determine the potential fuel savings associated with the respective programs.

The programs in Benin and Gujarat, India resulted in significant fuel savings of approximately 29% and 61%, respectively. In Uganda, the homes using liquefied petroleum gas (LPG) consumed approximately 31% less charcoal than those not using LPG, although the total energy consumption per household was similar between the baseline and LPG user groups.

Published on Sep 16, 2014 – Watch to see how a simple solution can improve life for the nearly 3 billion people who rely on wood- or coal-powered open cookstoves, and reduce carbon pollution along the way.